21 research outputs found

    Improving Access to Apprenticeship: Strengthening State Policies and Practices

    Get PDF
    Describes state efforts to expand the apprenticeship model through outreach, recruitment, and subsidies to strengthen labor market-based education and skills development strategies. Discusses obstacles, lessons learned from states, and recommendations

    Building Opportunity: How States Can Leverage Capital and Infrastructure Investments to Put Working Families on a Path to Good Jobs

    Get PDF
    Recommends state policies to boost the supply of skilled workers by expanding education and skills development opportunities for low-income, low-skilled adults and strengthening employer demand for and commitment to hiring them at family-sustaining wages

    Aligning Community Colleges to Their Local Labor Markets

    Get PDF
    Examines ways to better align community college curricula with employer needs, including analyzing online job ads to gather data on occupation and skill demands; examples of use of labor market information; and the potential and limitations of such data

    A Pathway to Clean Jobs and Prosperity: State Policies for Helping Low-Income Families Build Clean Energy Careers

    Get PDF
    Describes barriers to expanding access to clean energy jobs and state policy options. Recommends ways to invest in skills development programs for low-skilled, low-income workers; enhance employer commitment to hiring them; and raise the quality of jobs

    High-accuracy determination of the U 238 / U 235 fission cross section ratio up to ≈1 GeV at n-TOF at CERN

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOIThe U238 to U235 fission cross section ratio has been determined at n-TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n-TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n-TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.Peer reviewedFinal Published versio

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Creep strength boosted by a high-density of stable nanoprecipitates in highchromium steels

    No full text
    There is a need worldwide to develop materials for advanced power plants with steam temperatures of 700°C and above that will achieve long-term creep-rupture strength and low CO2 emissions. The creep resistance of actual 9-12Cr steels is not enough to fulfil the engineering requirements above 600°C. In this paper, the authors report their advances in the improvement of creep properties of this type of steels by the microstructural optimization through nano-precipitation using two methodologies. 1) Applying a high temperature austenitization cycle followed by an ausforming step (thermomechanical treatment, TMT) to G91 steel, to increase the martensite dislocation density and, thus, the number density of MX precipitates (M = V ,Nb; X = C ,N) but at the expense of deteriorating the ductility. 2) Compositional adjustments, guided by computational thermodynamics, combined with a conventional heat treatment (no TMT), to design novel steels with a good ductility while still possessing a high number density of MX precipitates, similar to the one obtained after the TMT in G91. The microstructures have been characterized by optical, scanning and transmission electron microscopy, EBSD and atom probe tomography. The creep behaviour at 700°C has been evaluated under a load of 200 N using small punch creep tests.The authors would like to thank James Burns for assistance in performing APT sample preparation and running the APT experiments. The authors are grateful for the dilatometer tests by Phase Transformation laboratory and for the SEM microscopy by the Microscopy Lab at CENIM-CSIC. This work contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).Peer reviewe
    corecore